Project No. 240677

QUARTERLY PROGRESS REPORT POWERINE REFINERY SANTA FE SPRINGS, CALIFORNIA

PREPARED FOR

POWERINE OIL COMPANY 12354 LAKELAND ROAD SANTA FE SPRINGS, CALIFORNIA 90670

PREPARED BY

IT Corporation 17461 Derian Avenue Irvine, California 92714

October 1987

TABLE OF CONTENTS

	PAGE
1.0 INTRODUCTION	1
1.1 PURPOSE AND SCOPE OF WORK	1
2.0 FIELD INVESTIGATION	1
2.1 GROUND-WATER MONITORING AND SAMPLING	1
3.0 LABORATORY TESTING	4
4.0 GROUND-WATER QUALITY	7
5.0 SUMMARY AND CONCLUSIONS	12
APPENDIX A - LABORATORY REPORTS	
APPENDIX B - CHAIN-OF-CUSTODY RECORDS	

LIST OF TABLES

TABLE NO.	<u>TITLE</u>			
1	Water-Level Elevation			
. 2	Sample Numbers, Times, and Methods			
3	Ground-Water Quality Data			

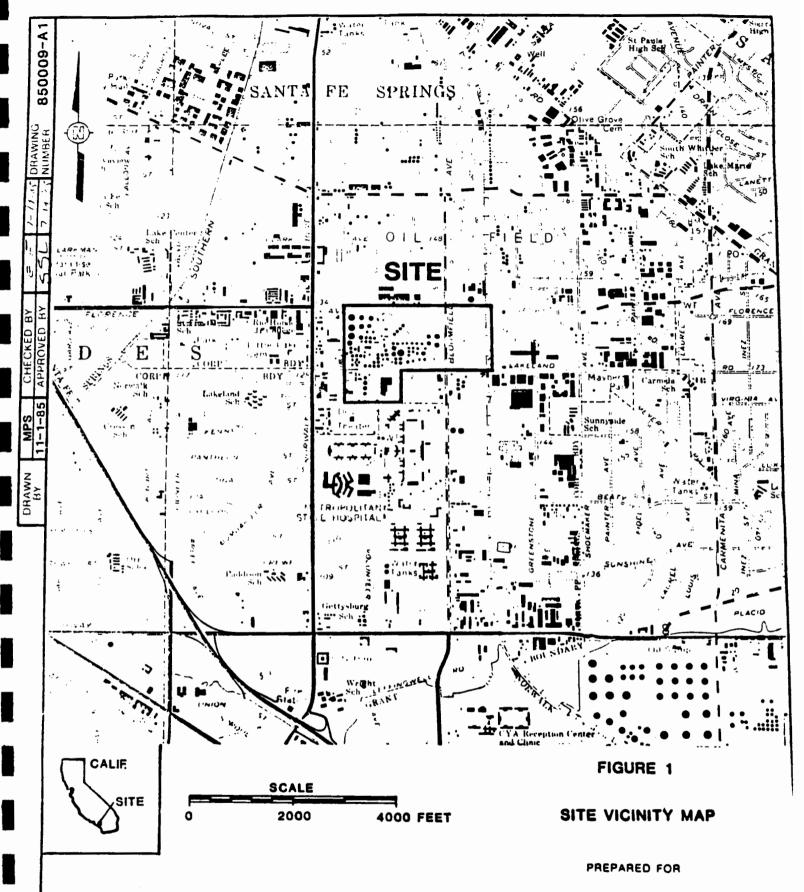
LIST OF FIGURES

FIGURE NO.	TITLE
1	Site Vicinity Map
2	Ground-Water Contours for Upper Aquifer

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE OF WORK

This report summarizes the results of IT Corporation's quarterly ground-water monitoring and sampling, conducted in September 1987, at Powerine Refinery (site), located at 12354 Lakeland Road, Santa Fe Springs, California (Figure 1). Activities included ground-water monitoring, sampling, and laboratory analyses.


2.0 FIELD INVESTIGATION

2.1 GROUND-WATER MONITORING AND SAMPLING

The field investigation consisted of monitoring and sampling fifteen on-site ground-water monitoring wells between September 24 and 30, 1987. The depth to ground water was measured and the presence of free product in the monitoring wells was checked. Only thriteen ground-water wells (MW-101, MW-103, MW-104, MW-201, MW-203 through MW-206, MW-501 through MW-504 and PW-6) could be sampled this quarter. Well MW-202 was not sampled due to the insufficient volume of water in the well. Well MW-102 could not be sampled because it was found to have been destroyed at the time of the July 1987 monitoring, apparently due to heavy traffic in the area.

In order to minimize the risk of cross-contamination during the monitoring and sampling program, work proceeded in order from wells with the least reported contamination to wells with increasingly contaminated water. In addition, before monitoring and sampling each well, all equipment used within the well (including pump, tape measures, bailers, etc.) was washed in a trisodium phosphate (TSP) solution, thoroughly rinsed with tap water, and then rinsed with distilled water.

Prior to sampling each monitoring well, the depth to ground water was measured (Table 1). A steel tape and chain (with water-indicator paste applied to one side of the tape and a gasoline-indicator paste to the other side) was used to

REFERENCE:
7.5 MINUTE USGS TOPOGRAPHIC MAP OF WHITTIER, CALIFORNIA, QUADRANGLE
DATE:1965, PHOTO REVISED 1981
SCALE: 1" 2000"

POWERINE OIL COMPANY SANTA FE SPRINGS, CALIFORNIA

. Creating a Safer Tomorrow

TABLE 1 WATER LEVEL ELEVATION

Monitoring Well No.	Date	Elevation Top of Casing (feet, ms1)	Depth to Water (feet)	Water Level Elevations (feet, msl)	Free Product (feet)
MW-101	9/28/87	134.98	87.61	47.37	ND
MW-102	9/28/87	134.81	a	a	a
MW-103	9/30/87	136.95	91.62	45.33	ND
MW-104	9/28/87	141.60	87.31	54.29	ND
MW-201	9/30/87	132.91	89.08	43.83	ND
MW-202	9/30/87	137.89	a	a	ND
MW-203	9/28/87	143.89	94.78	49.11	ND
MW-204	9/30/87	140.14	93.35	46.79	ND
MW-205	9/28/87	138.17	88.66	49.51	ND
MW-206	9/30/87	129.93	91.80	38.13	ND
MW-501	9/30/87	128.70	90.56	38.14	ND
MW-502	9/30/87	131.19	93.11	38.32	ND
MW-503	9/30/87	131.43	91.64	39.79	ND
MW-504	9/30/87	133.83	89.84	44.43	0.51

ND - Not detected TR - Trace a - Not measured

measure the depth to water and to detect floating free product. Free product was detected only in MW-504 (Table 1). Figure 2 shows the water-table elevation contours based on water-level measurements collected from September 24 to 30, 1987. Water table elevations in all of the wells are included in Table 1. The ground-water flow direction is toward the south-southwest, with no major apparent change from the previous monitorings.

Before sampling the ground water, each monitoring well was purged by pumping at least 3 well volumes or until constant readings of pH, electrical conductivity and temperature in discharged waters were recorded. Two methods were utilized to purge the wells - hand bailing and pumping with a Fultz® ground-water sampling pump (Table 2). Purged water was contained in 55-gallon drums to be disposed of by refinery personnel at a later date. All water samples were collected by using a Teflon® bailer except MW-504 and PW-6. A one-gallon PVC bailer was used in MW-504 because of the presence of free product in the well. PW-6, a deep on-site production well equipped with a pump, was sampled directly from the faucet located at the pump.

3.0 LABORATORY TESTING

Two ground-water samples were collected from each of the wells and analyzed for volatile hydrocarbons (EPA Method 624). The samples were stored in 40-ml vials with no air space. All samples were placed in pre-cleaned bottles obtained from the IT Laboratory in Cerritos, California, and were stored on ice before delivery to the laboratory. Samples were entered on the IT Chain-of-Custody forms (Appendix B) to ensure sample integrity and were then delivered to the IT Laboratory for chemical analyses.

For the purpose of quality control, two control blank samples (MW-601 and MW-604), consisting of distilled water collected through the pre-cleaned Teflon® bailer, used for sampling, also were submitted for analyses.

FX-9 Wells

TABLE 2 SAMPLE NUMBERS, TIMES, AND METHODS

SAMPLE NO.	DATE	TIME	PURGING METHOD	SAMPLING METHOD
MW-101	9/28/87	14:25	1-gal PVC bailer	Teflon bailer
MW-102	Not sampled	, the well is	destroyed	
MW-103	9/30/87	11:25	Fultz pump	Teflon bailer
MW-104	9/28/87	10:15	Fultz pump	Teflon bailer
MW-201	9/30/87	12:25	Fultz pump	Telfon bailer
MW-202	Not sampled	due to insuff	ficent volume of water	in well
MW-203	9/28/87	11:30	Fultz pump	Teflon bailer
MW-204	9/30/87	10:30	Fultz pump	Teflon bailer
MW-205	9/28/87	12:55	Fultz pump	Teflon bailer
MW-206	9/30/87	15:22	Fultz pump	Teflon bailer
MW-501	9/30/87	16:01	Fultz pump	Teflon bailer
MW-502	9/30/87	13:45	Fultz pump	Teflon bailer
MW-503	9/30/87	15:45	1-gal PVC bailer	1-gal PVC bailer
MW-504	9/30/87	16:10	Production pump	direct
MW-601-blank	9/30/87	10:40	Control blank*	
MW-604-blank	9/30/87	15:30	Control blank*	

^{*}Control blank - Distilled water sampled with a precleaned Teflon bailer.

4.0 GROUND WATER QUALITY

Complete analytical results of the ground-water samples are presented in the Certificates of Analysis, Appendix A. Review of the certificates of analysis reveal that only four compounds, including benzene, ethylbezene, toluene, and xylene (BETX) were detected in most of the samples. Therefore, BETX concentrations were summarized in Table 3. Some halogenerated hydrocarbons were also found in very low concentrations, ranging from trace to $16~\mu g/2$, in some of the samples. In addition, some samples showed concentrations of some non-priority pollutant volatile hydrocarbons (Appendix A). Sample MW-101 showed acetone concentrations of $1400~\mu g/2$. The presence of acetone in MW-101 can not be explained at this time. Future monitoring results are needed to investigate the source of acetone in this well. Acetone was below detection limit in all other samples.

For the purpose of this report, benzene has been chosen as the indicator parameter to characterize water quality at the site. Benzene was chosen because fluctuations in the concentrations of ethylbenzene, toluene, and xylene appear to follow a similar trend. Benzene concentrations range from non-detectable $<5~\mu g/\ell$, to a maximum of 12,000 $\mu g/\ell$. Non-detectable concentrations were reported from two upgradient wells, MW-104 and MW-205, and from PW-6. PW-6 is a downgradient production well screened in the lower aguifer (Figure 2).

The highest benzene concentrations, reported as 4,100 μ g/2, 8,400 μ g/2, and 12,000 μ g/2, were observed in MW-206, MW-502, and MW-504, respectively. The reported high concentrations of benzene in MW-504 were expected because 0.51 feet of free product were measured in the well at the time of monitoring.

Slight increases, compared with June 1987 data, in benzene concentrations were found in MW-101, MW-103, MW-203, and MW-206. Slight decreases in benzene concentrations were found in MW-201, MW-204, MW-501, MW-502, and MW-503. Although these increases and decreases are noted, the findings are generally

TABLE 3 **GROUND WATER QUALITY DATA** (ALL CONCENTRATIONS ARE IN µg/1)

WELL NO.	DATE	BENZENE	ETHYLBENZENE	TOLUENE	TOTAL XYLENES
MW-101	OCT 1985	TR35	<5	<5	<5
	JUL 1986	58	TR5	<1	<1
	NOV 1986	62	3.3	1.4	1.5
	JAN/FEB 198		2.5	TR<1.0	TR<1.0
	JUNE 1987	43	1.6	0.5	2.6
	SEPT 1987	340	37	ND<30	ND<30
MI 100	OCT 100E	0.400	1200	2400	7200
MW-102	OCT 1985 JUL 1986	8400	1200 790	2400 <50	7300
	NOV 1986	3,300		_	3200
	JAN/FEB 198	a 37 a	a.	a	a
	JUNE 1987	b a	a b	a b	a b
	SEPT 1987	Ь	b	b	b
	3EF1 1907		U		U
MW-103	OCT 1985	TR190	<25	TR12	<25
	JUL 1986	TR4	<1	<1	<1
	NOV 1986	78	ND<1.0	2.2	5.7
	JAN/FEB 198		1.0	1.0	3.9
	JUNE 1987	69	1.3	1.1	3.5
	SEPT 1987	120	ND<5	ND<5	ND<5
104	007 1005		-4		4
MW-104	OCT 1985	<1	<1	<1	<1
	JUL 1986	<1	<1	<1	<1
	NOV 1986	<1 1- ND -1	<1 ND -1	<1 ND -1	<1
	JAN/FEB 198		ND<1	ND<1	ND<1
	JUNE 1987	0.6	ND<0.5	0.5	1.5
	SEPT 1987	ND<5	ND<5	ND<5	ND<5
MW-201	OCT 1985	1600	140	· 650	260
-W-501	JUL 1986	<1	<1	<1	<1
	NOV 1986	68	10	10	32
	JAN/FEB 198		5.0	4.0	15
	JUNE 1987	290	23	12	3 9
	SEPT 1987	120	9	12	12
	JL1 130/	120		14	16

Not sampled due to presence of free product.

b - Not sampled, well is destroyed.
 ND - This compound was not detected; the limit of detection for this analysis is the amount stated in the table above.

Trace, this compound was present, but was below the level at which concentration could be determined.

TABLE 3 (continued)

GROUND WATER QUALITY DATA (ALL CONCENTRATIONS ARE IN µg/1)

WELL NO.	DATE	BENZENE	ETHYLBENZENE	TOLUENE	TOTAL XYLENES
MW-202	OCT 1985	1600	280	1500	2200
	JUL 1986	8100	73	7700	6300
	NOV 1986	Ь	b	Ь	b
	JAN/FEB 1987	b	b	Ь	b
	JUNE 1987	b	b	b	b
	SEPT 1987	b	b	b	b
MW-203	OCT 1985	24	TR2	TR1	TR2
M-203	JUL 1986	50	<1	TR6	18
	NOV 1986	88	TR<1.0	1.4	1.9
	JAN/FEB 1987		TR<1.0	1.0	3.4
	JUNE 1987	1.0	1.6	0.7	2.9
	SEPT 1987	92	ND<5	ND<5	ND<5
MW-204	OCT 1985	16	<1	<1	<1
201	JUL 1986	TR9	<1	< 1	<1
	NOV 1986	260	15	6.7	41
	JAN/FEB 1987		2.6	TR<1.0	2.3
	JUNE 1987	45	2.8	0.7	3.4
	SEPT 1987	18	ND<5	ND<5	ND<5
MW-205	OCT 1985	43	<1	<1	<1
M-203	JUL 1986	13	<1	<1	<1
	NOV 1986	7.5	ND<1.0	ND1.0	1.5
	JAN/FEB 1987		TR<1.0	ND<1.0	1.2
	JUNE 1987	3.6	0.5	0.6	1.5
	SEPT 1987	ND<5	ND<5	ND<5	ND<5
	JEI 1 130/	ני טוו	110-0	110 -3	110 -3

a - Not sampled due to presence of free product.

b - Not sampled due to insufficient volume of water in well.

ND - This compound was not detected; the limit of detection for this analysis is the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration could be determined.

TABLE 3 (continued)

GROUND WATER QUALITY DATA (ALL CONCENTRATIONS ARE IN µg/1)

WELL NO.	DATE	BENZENE	ETHYLBENZENE	TOLUENE	TOTAL XYLENES
MW-206	OCT 1985	4600	78	3000	6200
200	JUL 1986	3800	TR82	1800	9000
	NOV 1986	6800	1800	2700	7100
	JAN/FEB 1987	4500	1100	1800	3600
	JUNE 1987	3700	1300	1300	3200
	SEPT 1987	4100	1300	930	4000
MW-501	OCT 1985	С	. с	С	С
MH-301	JUL 1986	1400	290	51	470
	NOV 1986	1500	210	67	140
	JAN/FEB 1987		160	TR<50	74
	JUNE 1987	2200	210	40	78
	SEPT 1987	1400	170	ND<50	ND<50
		·			
MW-502	JUL 1986	10,000	1200	4100	6900
	NOV 1986	6200	1500	4100	8500
	JAN/FEB 1987	6300	960	1700	5200
	JUNE 1987	13,000	1400	2100	5600
	SEPT 1987	8400	1300	1700	5500
MW-503	JUL 1986	140	<1	<1	740
MM-303	NOV 1986	95	940	290	1600
	JAN/FEB 1987		440	95	690
	JUNE 1987	620	330	360	510
	SEPT 1987	53	280	76	390
MI 504	7UL 1006	1700	-00	F00	2000
MW-504	JUL 1986	1700	<20	520	3200
	NOV 1986	. a	a '	a	a
	JAN/FEB 1987		a	a	ā
	JUNE 1987	a	a	a	a
	SEPT 1987	12000	4000	16000	24000

a - Not sampled due to presence of free product.

b - Not sampled due to insufficient volume of water in well.

ND - This compound was not detected; the limit of detection for this analysis is the amount stated in the table above.

TR - Trace, this compound was present, but was below the level at which concentration would be determined.

GROUND WATER QUALITY DATA (ALL CONCENTRATIONS ARE IN $\mu g/1$,

WELL NO.	DATE	BENZENE	ETHYLBENZENE	TOLUENE	TOTAL XYLENES
PW-6	SEPT 1987	ND<5	ND<5	ND<5	ND<5
CONTROLS BLA	NKS SEPT 1987	5	ND<5	9	ND<5
MW-604	SEPT 1987	ND<5	ND<5	ND<5	ND<5

- a Not sampled due to presence of free product.
- b Not sampled due to insufficient volume of water in well.
- ND This compound was not detected; the limit of detection for this analysis is the amount stated in the table above.
- TR Trace, this compound was present, but was below the level at which concentration could be determined.

consistent with the previous sampling results as shown in Table 3. The control blank sample MW-601 was reported to contain 5 μ g/s benzene and 9 μ g/s toluene. Control blank sample MW-604 was reported to be below detection limits for all analyzed compounds.

5.0 SUMMARY AND CONCLUSIONS

Fifteen ground-water wells at the site were monitored between September 24 and 30, 1987. The ground-water flow direction was towards the south-southwest, with slight decreases in water levels as compared with previous monitorings. Water samples were collected from each of these wells after purging. The samples were then analyzed by the IT laboratory in Cerritos, California for volatile organic compounds using combined gas chromatography-mass spectrometry according to EPA Method 624. The findings of these analyses are consistent with previous quarterly sampling results.

Respectfully submitted,

IT CORPORATION

Rowland L. Hall, MS. Project Schentist

Esmail (Essi) Esmaili, Ph.D.

Project Manager

RLH/EE:djl

APPENDIX A

LABORATORY REPORTS

7144748309 ; # 2 7144748309;# 2

ANALYTICAL SERVICES

;10-12-87 3:00FM;

17606 Fabrica Way • Cerritos, California 90701 • 213-921-9831 / 714-523-9200

CERTIFICATE OF ANALYSIS

Prepared for:

IT Corporation

17451 Derien Ave.

Irvine, CA 92714

Attn: Essi Essaili/R. Hall

October 9, 1987

Date:

Date Received: September 30. 1987

P.O. Number 240577

Powerine 011

Job Number43097/s ls

Revised Report

Eleven (11) liquid samples labeled:

MH-501-P-81, MH-206-P-81, MH-604-P-81,

MH-502-P-81, MH-504-P-81, MH-204-P-81,

MH-601-P-81, MH-103-P-81, MH-201-P-81,

MM-503-P-81, PM-6-P-61

The samples were analyzed for volatile organic contaminants using combined gas chromatography-mass spectrometry according to a modified EPA Method 624, purge and trap. Results for compounds on the EPA Hazardous Substances List (HSL) are given on the enclosed summary sheets. Additional non-HSL volatile organic compounds found are listed below.

Non-H&L Volatiles

<u>Samole</u>	Compound	Micrograms/Liter
MI-206-P-61	Butene isomers	500
	Cyc i opentene	200
	Methy libutane	200
	2-Pentene	100
	Dimethy loyo lopropene	500
	Cyclohexane	200
	Methy lays lopentene	200
	Ethylpropenylbenzene isomer	100
	Trimethylbenzene isomer	100
	Unknown hydrocarbon	300
MH-502-P-61	Cyclohexane	600
	Methy lcyc lopentane	809

I certify that this report truly represents the finding of work performed by me or under my direct supervision. Reviewed and Approved

roup Leader

XEROX TELECOPIER 235; 10-12-87; 3:46 FM; · SENT ·BY: IT-CERRITOS

;10-12-87 3:00FM;

(145/U8444 →

71467064444

(144/40308 , # 3

7144748309;# 3

INTERNATIONAL TECHNOLOGY CORPORATION

IT Corporation E. Esmaili/R. Hall Job #43075 Page 2

Non-HSL Volatiles (Continued)

Samp le	Compound	Micrograms/Liter
MH-504-P-61	2-Mathy I butane	1000
	2-Pentene	800
	Dimethylcyclopropene	800
	Cyclohexane '	1000
	Methylethylbenzene isomers	2900
	Unknown hydrocarbons	3000
MN-503-P-\$1	2-Methy1propene	200
	2-Pentene	50
	Pentane	100
	Dimethylcyclopropane	100
	Cyclohexane	200
	Methy loyclopentane	200
	Cyclohexene	60
	Dimethy Ibutane	50
	Methy loyo lopentene	90
	Propenylbenzene isomer	70
	Unknown	300
164-201-P-81	2-Mathy 1 propane	6
	Cyclopentene	7
	Pentane	10
	Dimethy laye lopropane	10
	Cyclohexane	20
	Methylethylcyclopropene isceer	20
	Dimethy lbutane .	10
	Dimethylcyclopentane isomer	5
	Trimethylcyclopentane isceer	10
	Unknown hydrocarbons	26
	Unknowns :	100

· SENT ·BY: IT-CERRITOS ;10-12-87 3:01FM;

71467084444

7144748309;# 4

INTERNATIONAL TECHNOLOGY CORPORATION

IT Corporation E. Esmaili/R. Hall

JOD #43097 Page 3

Non-HSL Volatiles (Continued)

Samp le	Compound	Micrograms/Liter
MH-103-P-51	2-Methy1propane	60
	Butene isomer	30
	Pentane	40
	Pontene	40
	Cyc lohexane	200
	Methylcyclopentane	200
	Dimethylbutane	50
	Dimethylcyclopentane	20
	Methy 1 cyclohexane	40
	Dimethy)pentane	20
	Tetramethy I butane	40
	Unknown hydrocarbons	150
	Unknowns	240
MN-501-P-51	Trichlorofluoromethane	60
	Butene isomers	120
	Nothy lautane	70
	Dimethylcyclopropane	100
	Cyc lohexane	300
	Methylcyclopentane	200
	Propenylbenzene isomer	60
MH-204-P-S1	Pentané	6
	Pentene	7
	Cyc lohexane	9
	Methylcyclopentane	20
	Dimethy1butane	10
	Dimethy1pentane	5
	Tetramethy I pentane	20
	Unknown hydrocarbon	20
	Unknowns	23

Volatile Organic Compounds (Micrograms/liter)

Compound	MH-503-P-S1	MH-206-P-S1	MN-604-P-S1	MH-502-P-S1
Chloromethane	ND<50	MD<300	<u>NO<10</u>	MD<1000
Browoethane	ND<50	ND<300	ND<10	ND<1000
Vinyl chloride	NO<50	ND<300	ND<10	ND<1000
Ch loroethane	MD<50	ND<300	MD<10	ND<1000
Dichloromethans (methylens				
chloride)	MD<30	ND<100	ND<5	ND<500
Acetone	ND<50	ND<300	ND<10	ND<1000
Carbon disulfide	ND<30	ND<100	ND<5	NO<500
1,1-Dichlorosthylens	ND<30	MD<100	ND<5	ND<500
1,1-Dichloroethene	ND<30	NO<100	ND<5	ND<500
trans-1,2-Dichloroethene	TR<30	MD<100	ND<5	ND<500
Chloroform	ND<30	ND<100	ND<5	MD<600
1,2-Dichloroethane	ND<30	ND<100	ND<5	MD<500
Methyl ethyl ketone				
(2-Butanone)	NO<50	ND<300	MD<10	MD<1000
1,1,1-Trichloroethane	MD<30	ND<100	ND<5	ND<500
Carbon tetrachloride	MD<30	ND<100	ND<5	ND<500
Vinyl acetate	ND<50	ND<300	MD<10	ND<1000
Brandich larone thene	ND<30	ND<100	ND<6	ND<500
1,2-Bichloropropana	ND<30	ND<100	MD<5	ND<500
trans-1,3-Dichloropropene	ND<30	ND<100	ND<5	ND<500
Trichlorosthens	ND<30	ND<100	ND<5	ND<500
Chlorodibronomethane	ND<30	ND<100	MD<5	MB<500

SENT BY: IT-CERRITOS

7146708444 >

;10-12-87 3:02FM;

7144748309 ; # 6

7146708444+

7144748309;# 6

INTERNATIONAL TECHNOLOGY CORPORATION

Contin	
Olatile Organic Compounds (Micrograms/liter)	

M-502-P-51	MD, 500 MD, 1000 MD, 1000 MD, 1000 MD, 1000 MD, 500 MD, 500
M-604-P-51	
M-206-P-51	MD<100 MD<300 MD<300 MD<300 MD<300 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD<100 MD
M-503-P-51	MD<30 MD 30 MD<30 MD 30
Compound	1.1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethyl vimyl ether Tribromomethane, (Bromofors) 2-Hexanone Tetrachloroethane 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethyl benzene Styrene Xylene (Total) Acrolein Acrylonitrile Dichlorobenzenes

- This compound was not detected; the limit of detection for this analysis is amount stated in the table above.

XERUX TELECUPTER 200 , 10-12 01, 0140 FM.

. SENT. BY: IT-CERRITOS ;10-12-87 3:03PM;

7146708444-

(140)U8444 →

7144748309;# 7

(144(40300 , # ,

INTERNATIONAL TECHNOLOGY CORPORATION

(Continued)	
IN UNGANIC COMPOUNDS	(Hicrograms/liter
40141	

P-S1 MM-204-P-S1 MM-601-P-S1 MM-103-P-S1	ND ND<	10 ND<5	D
Compound PM-504-P-S1	Chloromethane Broaccathane Winyl chlorids Chloroethane Dichloromethane (methylene		(2-Butanone) 1,1,1-Trichloroethane Carbon tetrachloride Winyl acetate Bromodichloromethane 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethane ND<500 ND<500 Chlorodibromomethane ND<500 ND<500 ND<500

XEROX TELECOPIER 295; 10-12-87; 3:49 PM;

SENT' BY: IT-CERRITOS

Volatile Organic Compounds (Continued)
(Micrograms/liter)

;10-12-87 3:03PM ; 7146708444 >

7146708444+

7144748309 ; # 8 7144748309;# 8

INTERNATIONAL TECHNOLOGY CORPORATION

M4-103-P-S1	#D<6	120	2 00	ND<10	MD<10	MD<10	MD<5	ND<5	ND<5	ND<6	9 204	ND<5	#D<5	ND<20	10 <5	ND<5
M-601-P-51	MD <5	10	ND<5	01×0M	MD<10	MD<10	ND<5	900	œ	ND<5	ND<5	80 <5	ND<6	ND<20	20×02	9> Q 4
104-204-P-S1	ND<5	18	#D<5	MD<10	MD<10	ND<10	ND<6	MD<6	MD×6	ND<6	ND<5	ND<6	MD<6	MD<20	ND<5	5
M-504-P-51	ND<500	12000	MD4500	10×1000	MD<1000	ID<1080	ND<500	MD<500	15000	MD<500	4000	MD<500	24000	ND<2000	ND<500	ND-5500
Compound	1,1,2-Trichloroethme	Benzene	c1s-1, 3-U1ch loropropene	Z-Chioroethyl vinyl ether	2-Hexanone	4-Methy1-2-pentanone	Tetrachlaroethene	1,1,2,2-Tetrachlorosthane	Toluene	Chlorobenzene	Ethyl benzene	Styrene	Xylene (Total)	Acrolein	Acrylonitrile	Dichlorobenzanes

MD - This compound was not detected; the limit of detection for this analysis is the amount stated in the table above.

XEROX TELECOPIER 295; 10-12-87; 3:50 PM; · SENT ·BY: IT-CERRITOS

Volatile Organic Compounds (Continued)
(Micrograms/liter)

;10-12-67 3:04FM;

7146708444 +

7146708444+

7144748309 ; # 9 7144748309;# 9

INTERNATIONAL TECHNOLOGY CORPORATION

Compound	Chloromethane	Brosomethane	Vinyl chloride	Ch loroethane	Dichloromethane (methylene	chloride)	Acetone	Carbon disulfide	1,1-Dichloroethylene	1,1-Dichloroethane	trans-1,2-Dichlorosthens	Chlorofors	1,2-Dichlorosthane	Methyl ethyl ketone	(2-Butanone)	1,1,1-Trichloroethane	Carbon tetrachloride	Vinyl acetate	Browodichloromethane	1,2-01chloropropane	trans-1,3-Dichloropropens	Trichlorosthene	Chlorodibrosomethane
M-201-P-S1	ND<10	MD<10	MD<10	ND<10		MO<5	MO<10	80	\$>Q	MO<5	-	2008	6		MO<10	MD<6	#D<5	ND<10	ND<5	MD<5	ND<5	ND<5	ND<5
M-501-P-51	ND<100	ND<100	ND<100	MD<100		MD<50	MD<100	MD<50	MD<50	ND<50	TR<50	MX-50	ND<50		ND<100	MD<50	ND<50	10<100	ND<60	ND<50	MD<50	MD<50	ND<50
PM-6-P-S1	ND<10	ND<10	HD<10	ND<10		9>QM	MD<10	MD<5	8D<6	RD<5	MD<5	ND<5	S>QX		ND<10	3	ND<6	MD<10	ND<6	MD<5	ND CE	6	\$2

XEROX TELECOPIER 295; 10-12-87; 3:51 PM; SENT BY: IT-CERRITOS ;10-12-87 3:04PM;

7146708444 >

→ 71447483U9 ; #10

7144748309;#10

7146708444+

INTERNATIONAL TECHNOLOGY CORPORATION

Volatile Organic Compounds (Continued)
(Nicrograms/liter)

MD - This compound was not detected; the limit of detection for this analysis is the amount stated in the table above.

7144748309 ; = 2

SENT BY: IT-CERRITOS

;10-9-87 3:05FM;

7146708444+

7144748309;# 2

ANALYTICAL SERVICES

17505 Fabrica Way • Cerritos, California 90701 • 213-921-9831 / 714-523-9200

CERTIFICATE OF ANALYSIS

Prepared for:

IT Corporation

17461 Derian Ave. Irvine, CA 92714

Attn: Essi Essaili/R. Hall

October 9, 1987

Date:

Date Received: September 29, 1987

P.O. Number 240677

Powerine 011

Job Number43075/s1s

Four (4) liquid samples labeled: MW-104-P-\$1, MW-203-P-\$2, MW-205-P-\$3 and MW-101-P-S4

The samples were analyzed for volatile organic contaminants using combined gas chromatography-mass spectrometry according to a modified EPA Method 624, purge and trap. Results for compounds on the EPA Hazardous Substances List (HSL) are given on the enclosed summary sheets. Additional non-HSL volatile organic compounds found are listed below.

Non-HSL Volatiles

Sample	Compound	Micrograms/Liter
MW-206-P-S3	Dimethy1butane	10
	Unknowns	20
MW-203-P-83	Fluoropropane	7
	2-Methy1propane	10
	Butene isomers	50
	Pentene isomer	7
	Cyclohexane	20
	Methylcyclopentane	10
	Dimethylbutane	20
	Trimethylhexane	5
	Trimethy lcyclopentanes	28
	Unknown aliphatic hydrocarbons	45
	Unknown	50

I certify that this report truly represents the finding of work performed by me or under my direct supervision.

> Characeh N. Moaddel Sharareh Nasser-Moaddeli Group Leader

Reviewed and Approved

Richard L. Merrell Laboratory Director KERUK TELECUPTER 200 , TO 0 01, 0.02 FM.

SENT BY: IT-CERRITOS ;10- 9-87 3:06FM;

71467084444

1117777777777

7144748309;# 3

1111 - - - - - - -

INTERNATIONAL TECHNOLOGY CORPORATION

IT Corporation
E. Esmaili/R. Hall

Job #43075 Page 2

Non-HSL Volatiles (Continued)

Sample	Compound	Micrograms/Liter
MW-101-P-\$4	Methylpropane	100
	Cyclopentane	800
	Methylbutane	500
	Methy 1 butene	100
	Pentene	100
	Dimethylcyclopropane	500
	Cyclohexane	100
	Methylcyclopentane	300
	Cyclohexene	100
	Methylcyclopentene	60
	Hexene	40
	Methylpentane	60
	Mathylcyclohexene	100
	Dimethy lcyclohexene	30
	Unknown aliphatic hydrocarbons	1200
	Unknowns	50

Volatile Organic Compounds (Micrograms/liter)

INIEMALICAN ISCHINOCE CONTRIBUTION

Compound	M-104-P-S1	MH-203-P-S2	MH-205-P-S3	MN-101-P-S4
Chloromethane	ND<10	ND<10	ND<10	ND<50
Bronomethane	MD<10	ND<10	ND<10	ND<50
Vinyl chloride	ND<10	ND<10	ND<10	ND<50
Ch loroethane	ND<10	ND<10	MD<10	MD<50
Dichloromethane (methylene				
chloride)	ND<5	ND<5	ND<5	ND<30
Acetone	ND<10	ND<10_	MD<10	1400
Carbon disulfide	ND<5	ND<5_	ND<5	ND<30
1,1-Dichloroethylene	ND<5	₩D<5	TR<5	. ND<30
1,1-Dichlorosthane	ND<5	ND<5	ND<5	ND<30
trans-1,2-Dichloroethene	ND<5	11	ND<5	ND<30
Chloroform	ND<5	ND<5	ND<5	ND<30
1,2-Dichloroethane	ND<5	ND<5	7	ND<30
Methyl ethyl ketone				
(2-Butanone)	MD<10	ND<10	ND<10	ND<50
1,1,1-Trichloroethane	ND<5	ND<5	ND<5	ND<30
Carbon tetrachloride	NO<5	ND<5	ND<5	ND<30
Vinyl acetate	ND<10	ND<10	MD<10	ND<30
Bromodichloromethane	MD<5	ND<6	ND<5	ND<30
1,2-Dichloropropane	ND<5	ND<5	ND<5	ND<30
trans-1,3-Dichloropropene	ND<5	ND<5	ND<5	ND<30
Trichloroethene	ND<5	ND<5	ND<5	ND<30
Chlorodibromomethane	MD<5	ND<5	ND<5	ND<30

10-

Volatile Organic Compounds (Continued) (Micrograms/liter)

Compound	MH-104-P-S1	MM-203-P-S2	MM-205-P-S3	MH-101-P-S4
1,1,2-Trichloroethane	ND<5	ND<5	ND<5	ND<30
Benzene	MD<5	92	ND<5	340
cis-1,3-Dichloropropene	ND<5	ND<5	ND<5	ND<30
2-Chloroethyl vinyl ether	ND<10	ND<10	ND<10	ND<50
Tribromomethane, (Bromoform)	ND<5	ND<5	ND<5	ND<30
2-Hexanone	ND<10	ND<10	ND<10	ND<50
4-Methy1-2-pentanone	ND<10	ND<10	NÐ<10	ND<50
Tetrach loroethene	ND<5	ND<5	ND<5	ND<30
1,1,2,2-Tetrachloroethane	ND<5	ND<5	ND<5	MD<30
Toluene	MD45	ND<5 ** ***	- DG	NO 630
Chlorobenzene	ND<5	ND<5	ND<5	ND<30
Ethyl benzene	ND<5	ND<5	ND<5	37
Styrene	ND<5	ND<5	ND<5	ND<30
Xylene (Total)	ND<5	ND-c5	10.45	- 10 CO
Acrolein	ND<20	ND<20	ND<20	ND<30
Acrylonitrile	ND<5	ND<6	ND<5	ND<100
Dichlorobenzenes	ND<5	ND<5	ND<5	MD<30

ND - This compound was not detected; the limit of detection for this analysis is the amount stated in the table above.

APPENDIX B
CHAIN-OF-CUSTODY RECORDS

M	INTERNATIONAL TECHNOLOGY
	CORPORATION

CHAIN-OF-CUSTODY RECORD

R/A Control No. ニング・ラム

PROJECT NAME/NUMBER | CARPIEDAVAYOUR CARPIEDAVA CARPIEDA CARPIEDA CARPIEDA CARPIEDA CARPIEDA CARPIEDA CARPIEDA

___ CARRIER/WAYBILL NO. _

Sample Number	·		Date and Time cription Collected		Sample Type		Container Type		Condition on Receipt (Name and Date)	Disposal Record No.
MW-204-P-51	MW-204	Powerire	9/30/8	1 10:30	61	W	40 n	l		
1)	ij	1.)		"						
nu-601-P-5	1 MW-601	11		10:55						
"	Ÿ	11		"			Y			
m-103-85	1 MW-103	И		11:25						
11	11	11		8						
4N-201-P-51	MW-201)1		12:25						
")/	h		11						
MN-503-P-S	1 MN-503	11		13:45						
11	/1	./1	V	1)	,	+	4			

Special Instructions:	
Possible Sample Hazards: — Hone Known	
SIGNATURES: (Name, Company, Date and Time)	· · · · · · · · · · · · · · · · · · ·
1. Relinquished By: Non land Littall	3. Relinquished By:
1. Relinquished By: Received By: 1/30/87(31815	Received by:
2. Relinquished By:	4. Relinquished By:
Received By:	Received By:

INTERNATIONAL TECHNOLOGY CORPORATION
PROJECT NAME

PROJECT NUMBER

PROJECT MANAGER

REQUEST FOR ANALYSIS

· , , ,		
1 1000		
1	i	,
7 7	1.10	

BILL TO PURCHASE ORDER NO.

DATE REPORT REQUIRED PROJECT CONTACT

DATE SAMPLES SHIPPED

LABORATORY CONTACT

SEND LAB REPORT TO

LAB DESTINATION

PROJECT CONTACT PHONE NO.

Sample No.	Sample Type	Sample Volume	Preservative	Requested Testing Program	Special Instructions
110204-11-51	GU	4cm	irc	E1# 62 9	
1'					
MW-601 P.51					
11				Y :	
Mw-163 P.SI				<u> </u>	
<u> </u>					***
24 17W- 251-P. SI					
1 "				i	
15 MW 503-F-51		•	1.	¥/.	

TURNAROUND TIME REQUIRED:	(Rush must be approved by the Project	Manager)			
	Normal	Rush	(Subject to rush surcharge)		
POSSIBLE HAZARD IDENTIFICATION	N: (Please indicate if sample(s) are h	azardous materials a	nd/or suspected to contain high levels of hazardous substances)		

Nonhazard Flammable. Skin Irritant _ Highly Toxic . (Please Specify) SAMPLE DISPOSAL: (Please indicate disposition of sample following analysis. Lab will, charge for packing, shipping, and disposal.)

Return to Client .

FOR LAB USE ONLY

Received By _ Date/Time

WHITE - Original, to accompany samples YELLOW - Field copy

	INTERNATIONAL TECHNOLOGY
للللا	CORPORATION

CHAIN-OF-CUSTODY RECORD

R/A Control No. 221057

C/C Control No.

,	,	•,•	,
•			ĺ
			•

PROJECT NAME/NUMBER

Powerine/240677 ? Hall

CARRIER/WAYBILL NO.

IT Carridos

SAMPLE TEAM MEMBERS

Condition on Receipt Disposa! Container **Date and Time** Sample Sample Sample (Name and Date) Record No. Number **Location and Description** Collected Type Туре Powerine 9/30/87 16:10 40 110 ml PW-6-P-91 11 1/

Special Instructions:	······································
Possible Sample Hazards: Known	
SIGNATURES: (Name Company Date and Time)	
1. Relinquished By: Kowland & Hall	3. Relinquished By:
1. Relinquished By: Powland L Hall Received By: Prydu 70 9/30/8/6/18/5	Received by:
2. Relinquished By:	4. Relinquished By:
Received By:	Received By:

TECH	RNATIONAL NOLOGY ORATION	F	REQUEST FOR ANAL	YSIS	R/A Con C/C Con	
PROJECT NAME		· , , , , , , , , , , , , , , , , , , ,	DATE S	SAMPLES SHIPPED		
PROJECT NUMB	JER	6 7	LAB DE	STINATION		
PROJECT MANA	GER	SI POMACE	LABOR	ATORY CONTACT	1	
BILL TO	- 11	1. vine	SEND L	AB REPORT TO		1 1 11 11
	-174 	ine, Ca	/)v (- 11/11:
PURCHASE ORD	ER NO.	•	DATE R	EPORT REQUIRED	iee	Amy Carren
			PROJEC	CT CONTACT		
•			PROJEC	CT CONTACT PHONE NO.		1 361 62 117
Sample No.	Sample Type	Sample Volume	Preservative	Requested Testing Prog	ram	Special Instructions
700						

NW 102-					
- Ideas		*			
Fin-6-0-51	6W	40ml	ice	E171611	
!!	11	11		Y ,	
			VI		
TURNAROUND TIME	REQUIRED: (Rush mus	st be approved by the Project M	anager)		
	Normal		1, 4	ush surcharge)	
POSSIBLE HAZARD	IDENTIFICATION: (Plea	se indicate if sample(s) are haz	ardous materials and/or suspect	ed to contain high levels of hazardous substance	es)
Nonhazard	Flammal	ble	Skin Irritant	Highly Toxic	Other
PAMPLE DIODOCAL	(Discussion of the state of the				(Piezze Specify)
SAMPLE DISPOSAL:	(Please indicate disposition of s	ample following analysis. Lab will c	harge for packing, shipping, and disp	oosal.)	

Date/Time _

WHITE - Original, to accompany samples YELLOW - Field copy

FOR LAB USE ONLY

Return to Client _

Received By _

INTERNATIONAL TECHNOLOGY
CORPORATION

SAMPLE TEAM MEMBERS

CHAIN-OF-CUSTODY RECORD

R/A Control No. 27056

C/C Control No.

Powerine/240677 P. Hall

Perritos

CARRIER/WAYBILL NO.

Sample Number	Sample Location and Descrip	otion		and Time lected	Sample Type	Container Type	Condition on Receipt (Name and Date)	Disposal Record No.
MW-501-18-5	1 Mw-50/	Powerine	9/30/8	1 14:30	407	York		
1'	11	1		11				
NW. 206-P-	1 MW-206			15122				
ı/	11			''		Y		
MW-604 P-	51 MW-604			15 30	M	1		
11	! 1							
MW-50Z-P-	SI MW-502			16:10				
1/	V			11				
mw -504-P	-51 MW-504			17:38			free prod	
11	/1	\sim	1	1/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	11	

Special Instructions: Possible Sample Hazards: Tree product in # MW-504						
SIGNATURES: (Name, Company, Date and Time)	•					
1. Relinquished By: Fowland LHall	3. Relinquished By:					
Received By: 10 Myder 170 1/30/87 2018/5	Received by:					
2. Relinquished By:	4. Relinquished By:					
Received By:	Received By:					

	RNATIONAL NOLOGY ORATION	Ri	EQUEST FOR ANALY	rsis	R/A Control No. C/C Control No.	
PROJECT NAME PROJECT NUMB PROJECT MANA	$3ER = \frac{340}{2}$	7 ower int 640617 Fasi Famaili		AMPLES SHIPPED STINATION ATORY CONTACT	Flore Convers	
BILL TO		Tryine al Dirian AVC	SEND LA	AB REPORT TO	17 -1411 S	
PURCHASE ORD	ER NO		DATE RI	EPORT REQUIRED T CONTACT T CONTACT PHONE NO.	See ithin Deonii Bry Hall (714) 261 644	
Sample No.	Sample Type	Sample Volume	Preservative	Requested Testing Prog	ram Special Instruction	
MW-501-P-51 11 MW-206-P-51	GW -	40ml	OD	FPA:62	27	
mu-104-0-51			\(\)\r			
11 MW = 502-P-SI						
11 MW-502-P-SI 11 MW-504-PS						
11	Normal		sh (Subject to	rush surcharge) ted to contain high levels of hazard	ous substances)	

Return to Client _____ Disposel by Leb __

FOR LAB USE ONLY

Received By

ate/Time

WHITE - Original, to accompany samples YELLOW - Field copy

	INTERNATIONAL TECHNOLOGY CORPORATION
--	--

CHAIN-OF-CUSTODY RECORD

R/A Control No. (27031)

	0 /	C/C CONTROL NO.
PROJECT NAME/NUMBER	Towerine / 240677	LAB DESTINATION
	011	
SAMPLE TEAM MEMBERS	N. Hall	CARRIER/WAYBILL NO.

Sample **Date and Time** Sample Container Condition on Receipt Disposal Sample Type Type (Name and Date) Record No. Collected Number **Location and Description** 40 ml 6W MW-104 MW-104-P-51 MW-203 MW-203-P-5 MW-205-P-91 MW-205 MW-203101 11 , 1

Special Instructions:
Possible Sample Hazards: None Known
SIGNATURES: (Name, Company, Date and Time)
1. Relinquished By: Rowland & Hall = 1/24/87 900 3. Relinquished By:
Received By: Walter Crone, II, 9.29.87 900 Received by:
2. Relinquished By: Matter Grane, IT, 9.29.87 1007 4. Relinquished By: Received By: Fath Inysler 170 - 4/29/8/2007 Received By:
Received By: fath Inyster 170 - 4/29/81/10 Received By:

INTERI TECHN CORPO	NATIONAL IOLOGY DRATION	R	EQUEST FOR ANAL	LYSIS	R/A Control No.
PROJECT NAME PROJECT NUMBE PROJECT MANAG	<i>2</i> , <i>7</i> ,	Corp Derion Ave	LAB DE	SAMPLES SHIPPED ESTINATION RATORY CONTACT LAB REPORT TO	Ann Oconner Essi Famaili 77 Joseph Ca
PURCHASE ORDE	ER NO.		PROJE	REPORT REQUIRED CT CONTACT CT CONTACT PHONE NO.	K: Hall 261-6441
Sample No.	Sample Type	Sample Volume	Preservative	Requested Testing Prog	gram Special Instructions
MW-203-P-53	GW	40 ml	ICE OP	FPA GZY	only only only

TURNAROUND TIME REQUIRED: (Rush must be approved by the Project Manager.) Normal _____ (Subject to rush surcharge) POSSIBLE HAZARD IDENTIFICATION: (Please indicate if sample(s) are hazardous materials and/or suspected to contain high levels of hazardous substances) Walling June 177, Spinyington 900 Nonhazard . **Highly Toxic** SAMPLE DISPOSAL: (Please indicate disposition of sample following analysis. Lab will charge for packing, shipping, and disposal.) Return to Client ..

FOR LAB USE ONLY

Received By

WHITE - Original, to accompany samples YELLOW - Field copy